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1 Boundary Value Problems for the Laplace Equation

1.1 The Dirichlet and Neumann problems

Last time, we were looking at the Laplace equation

−∆u = f in Rn.

We saw a few ways to look at this:

• via the fundamental solution. This led to elliptic regularity.

• via the maximum principle. This gave us a way to prove uniqueness of solutions.

• via energy estimates. This is what we will discuss today.

When we look at the Laplace equation, we need some boundary behavior¿ The Dirich-
let problem is to solve the Laplace equation with the following boundary condition.{

−∆u = f in Ω ⊆ Rn

u = g on ∂Ω

Alternatively, we can look at the Neumann problem with a boundary condition on the
normal derivative of the solution.{

−∆u = f in Ω ⊆ Rn
∂u
∂ν = g on ∂Ω

Can we impose both the Dirichlet and Neumann boundary conditions? The answer is
not always. The equation 

−∆u = f in Ω ⊆ Rn

u = g on ∂Ω
∂u
∂ν = g on ∂Ω
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is an overdetermined problem. It makes sense to consider this locally.

This local problem will in general have uniqueness but not neccesarily existence. This leads
to a type of problem called a unique continuation problem.

1.2 Uniqueness concerns for the Dirichlet and Neumann problems

Proposition 1.1 (Uniqueness for the Dirichlet problem). The solution to the Dirichlet
problem {

−∆u = f in Ω ⊆ Rn

u = g on ∂Ω

is unique.

Proof. Suppose u1, u2 are solutions. Then v = u1 − u2 solves{
−∆v = 0 in Ω ⊆ Rn

v = 0 on ∂Ω.

We want to show that v = 0. We have

0 =

∫
−∆v · v dx

=

∫
−∂j∂jv · v dx

Green’s theorem gives

=

∫
∂jv∂̇jv −

∫
∂Ω

∂v

∂ν
· v︸︷︷︸

=0

dσ.

So we get

0 =

∫
Ω
|∇v|2 dx,

which tells us that ∇v = 0 in Ω. Thus, v is constant, and the boundary condition tells us
that v = 0.
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Remark 1.1. What about uniqueness of the Neumann problem?{
−∆u = f in Ω ⊆ Rn
∂u
∂ν = g on ∂Ω

By the same computation, we still get that∫
Ω
|∇u|2 = 0,

which tells us that u is constant. The boundary condition is satisfied by any constant,
however. So solutions are unique modulo constants.

1.3 Existence using energy type estimates

If f : R→ R, then a minimum point x0 for f must have f ′(x0) = 0. We can do the reverse.
If we have an equation for a function, we can write it as the derivative of another function
and interpret our equation as finding the minimizers (or critical points) for this function.

Looking at functions u : Ω ⊆ Rn → R, associate the functional

L(u) =

∫
Ω
|∇u|2 − f · u dx.

We will call this the Lagrangian of the problem. Our goal is to minimize L(u) over a
good class of functions u; we can assume some nice regularity and our boundary condition.
Let A = {u : Ω→ R | u ∈ C2, u = 0 on ∂Ω}. So we want

min
u∈A
L(u).

Does a minimum exist? We will not answer this today, but observe that L is strictly convex
because it is the sum of a positive quadratic form and a linear term. If we have a minimum,
then by strict convexity, the minimum will be unique.

We may also ask: What equation does a minimum satisfy? Suppose u is a minimum.
Take v ∈ D(Ω), and set uh = u+ hv.
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Look at L(uh) as a function of h. This has a minimum at h = 0, which tells us that

d

dh
L(uh) = 0 at h = 0.

Write

L(uh) =

∫
|∇(u+ hv)|2 − f · (u+ hv) dx,

so
∂

∂h
L(uh)|h=0 =

∫
∇u · ∇v − f · v dx.

Hence,

0 =

∫
∇u · ∇v − fcv̇ dx

for all v ∈ D(Ω). Integration by parts gives us

=

∫
Ω
−∆u · v − fv dx

=

∫
Ω
v(−∆u− f) dx.

So we get
−∆ = f in Ω.

And we can append our favorite boundary condition.

Remark 1.2. The regularity condition u ∈ C2 is not the correct condition to use. Really,
we want to use Sobolev spaces, which we have not discussed yet.

1.4 Green’s functions for domains with boundary

Circle back to the fundamental solution and try to use it in a domain with boundary. We
will look at how this doesn’t work and how it can be fixed. In Rn, we have the formal
computation ∫

−∆u ·K(x− x0) dx =

∫
u · −∆K︸︷︷︸

δx0

(x− x0) dx.

If −∆u = f , then ∫
f ·K(x− x0) dx = u(x0).

What about a domain with boundary?∫
Ω
−∆u ·K(x− x0) dx =

∫
u · −K(x− x0) dx+

∫
∂Ω
−∂u
∂ν
·K(x− x0) + u · ∂

∂ν
K(x− x0) dσ.
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If u solves the Dirichlet problem {
−∆u = f in Ω ⊆ Rn

u = g on ∂Ω,

then

u(x0) =

∫
Ω
f(x)K(x− x0) dx+

∫
∂Ω

∂u

∂ν
K(x− x0)− g · ∂K

∂ν
(x− x0) dσ,

but we do not know what ∂u
∂ν is. We do not have this information, and recall that if we do,

then we have an overdetermined problem.
How do we fix this? Perhaps the fundamental solution is not the object we want to be

looking at. Replace K(x− x0) by G(x, x0) to get∫
Ω
−∆u ·G(x− x0) dx =

∫
u · −G(x− x0) dx+

∫
∂Ω
−∂u
∂ν
·G(x− x0) + u · ∂

∂ν
K(x− x0) dσ.

We would like the properties{
−∆xG(x, x0) = δx0 ,

G(x, x0) = 0 x ∈ ∂Ω.

If we have these properties, then

u(x0) =

∫
Ω
f ·G(x, x0) dx+

∫
∂Ω
g
∂

∂ν
G(x, x0) dσ.

If we had such a function G, then we could solve the Dirichlet problem. Call this function
G the Green function1 in Ω.

Remark 1.3. G = G(x, x0), not G(x−x0) because translation invariance is broken by our
domain. If you translate the domain with boundary, you will not get the same domain.

To find such a function G, we would try

G(x, x0) = K(x− x0) + ψ(x, x0)

and look for an equation for ψ. We need{
−∆xψ(x, x0) = 0 in Ω

ψ(x, x0) = −K(x− x0) x ∈ ∂Ω.

K(x− x0) is smooth for x ∈ ∂Ω and x0 ∈ Ω, so by elliptic regularity, ψ should be smooth.
ψ can be found by solving a Dirichlet problem.

1If we are solving the Neumann problem, we may get a different Green function
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Remark 1.4. You may think this is leading us in a circle, but this is not the case: Here,
we are solving a Dirichlet problem with a very special boundary data, K(x − x0). This
may make the Green’s function easier to find than solving the original equation otherwise.

Remark 1.5. The Green function is symmetric:

G(x, y) = G(y, x).

Let’s calculate some Green’s functions.

Example 1.1 (half-plane). Let Ω = {xn > 0}. The idea is to calculateG using symmetries.
Here is the picture we should have in mind:

We have
G(x, x0) = K(x− x0) + ψ(x, x0).

If we were to use x∗0, then K(x− x∗0) is harmonic in Ω. Now also observe that for x ∈ ∂Ω,
|x−x0| = |x−x∗0| for x ∈ ∂Ω. Thus, the radial symmetry of K gives K(x−x0) = K(x−x∗0).
This implies that we can choose

G(x, x0) = K(x− x0)−K(x− x∗0).

Example 1.2 (unit ball). Let Ω = B(0, 1). Here, we can try repeating the same argument
but with inversion about the boundary of the circle:
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If we have point x ∈ ∂Ω, then

|x− x0| = |x− x∗0| · |x0|.

So if we are in Rn for n ≥ 3,

G(x, x0) = K(x− x0)− |x− 0|2−nK(x− x∗0)

The proportionality constant comes from the fact that the first term is like |x − x0|2−n,
while the second term is like |x− x∗0|2−n.

These kinds of computations are available only in very specific domains, so the existence
of Green’s functions is more of a qualitative question than a computational one.
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